
Procedural Generation of Levels for Angry Birds Style Physics Games

Matthew Stephenson and Jochen Renz
Research School of Computer Science

Australian National University
Canberra, Australia

matthew.stephenson@anu.edu.au, jochen.renz@anu.edu.au

Abstract

This paper presents a procedural generation algorithm
for levels in physics-based puzzle games similar to
Angry Birds. The proposed algorithm creates levels
consisting of various self-contained structures placed
throughout a 2D area. Each structure can be placed ei-
ther on the ground or atop floating platforms within the
available level space. These structures are created using
a variety of different block types and do not require pre-
defined substructures or composite elements. Target ob-
ject locations are determined based on a combination of
factors, including structural protection, occupancy esti-
mation and overall dispersion. Experiments were per-
formed in order to determine the ideal input parameters
for generating desirable levels. The expressivity of the
generator was also evaluated and the results show that
the proposed method can generate a wide variety of in-
teresting levels.

Introduction
Procedural level generation (PLG) is one of the most popular
forms of procedural content generation (PCG) and has been
implemented in an extensive assortment of digital games
(Hendrikx et al. 2013). PLG is defined as ”the automatic
creation of game levels without manual interaction” and typ-
ically requires multiple different components of a level to be
dependently generated (Kerssemakers et al. 2012). PLG can
be used to generate a large number of levels in a short period
of time. This can greatly reduce a games development cycle
and memory requirements (Dahlskog and Togelius 2012),
as well as providing unique and original gameplay expe-
riences based on the user’s playstyle (Yannakakis and To-
gelius 2011).

Previous research into PLG has explored its applicabil-
ity to many different game genres. These include platform
(Mourato, dos Santos, and Birra 2011), racing (Cardamone,
Loiacono, and Lanzi 2011), role-playing (Valtchanov and
Brown 2012), arcade (Cook and Colton 2011), stealth (Xu,
Tremblay, and Verbrugge 2014), roguelike (Stammer et al.
2015) and real-time strategy (Lara-Cabrera et al. 2015). Sev-
eral papers have also explored the use of PLG for physics-
based puzzle games, most notably for the Cut the Rope

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Shaker, Shaker, and Togelius 2013a; 2013b; Shaker et al.
2015) and Angry Birds games (Ferreira and Toledo 2014a;
2014b; Kaidan et al. 2015; 2016). The physics constraints
employed in these types of games create many problems for
PLG and makes evaluating the quality of levels difficult. The
playability/solvability of generated levels is particularly dif-
ficult to confirm, due to the exceptionally large state and ac-
tion spaces (Shaker et al. 2013).

This paper presents a procedural level generator for
physics-based puzzle games similar to Angry Birds. Al-
though the proposed generator is designed specifically for
the Angry Birds elements and environment, the techniques
used can be applied to many other similar games. Examples
of such games include Crush the Castle, Fragger and Siege
Hero, all of which share the same general level design and
play style as Angry Birds. Several different level aspects are
considered by our generator, including structure generation,
structure placement, target placement, support analysis and
bird selection.

Previous implementations of PLG for Angry Birds have
been very limited in terms of what they have been able
to achieve. These prior methods can only generate sim-
ple levels, containing columns of either single objects or
small predefined structures (Ferreira and Toledo 2014b;
2014a). Several attempts have been made to improve this
approach by adapting levels to the player’s skill (Kaidan et
al. 2015) and increasing the number of composite elements
(Kaidan et al. 2016). However, even with these alterations
the complexity of the generated levels is still relatively low.
In contrast, our proposed PLG can create a broad range of
levels, containing a wide assortment of complex and novel
structures.

Several experiments were conducted to analyze the ex-
pressivity of our level generator and to determine its capabil-
ities. Metrics such as frequency, linearity, density, leniency
and playability, were used to describe the characteristics of
the generated levels. The stability of generated structures for
different widths, heights and compositions was also investi-
gated.

Angry Birds Level Overview
Angry Birds levels consist of several different components.
On the left side of the level there is a slingshot and a number
of birds which can be thrown by it. On the right side there

Figure 1: The twelve different blocks available.

are various blocks, platforms and pigs, usually arranged into
an interesting design. The objective of any given level is to
kill all the pigs using the birds provided. The source code
for the official Angry Birds game is not currently available,
so a Unity-based clone created by Lucas Ferreira was used
(Ferreira and Toledo 2014b).

Before describing our algorithm’s methodology we will
define some terms which will be used throughout this paper.
A block is any object within the level which can be moved
apart from a bird or pig. There are currently twelve different
blocks available within the unity clone, see Figure 1. Blocks
one to eight are referred to as ”regular” blocks, whilst blocks
nine to twelve are called ”irregular”. A platform is any sur-
face, apart from the ground of the level, which has a fixed
position. We also define the concept of ”level space” which
is a pre-defined area of the level, within which blocks, plat-
forms and pigs can be placed. This level space is used to
prevent objects being placed too close to the slingshot, be-
low the ground, or outside of the camera’s view. The posi-
tions of the slingshot and ground are fixed within a level and
all other objects are placed relative to these two locations.

Proposed Level Generator
The proposed level generator creates Angry Birds levels
consisting of a collection of independent structures. These
structures are distributed throughout the available level
space, either on the ground or atop floating platforms. The
number of ground and platform structures can be decided ei-
ther manually or by random selection. Before discussing the
placement of these structures within a level it is necessary to
first explain how these structures are created.

Structure Generation
Within our level generator there is a self-contained structure
generator which creates complex structures using the eight
regular blocks available. Five of the regular blocks (2, 5,
6, 7 and 8) can also be rotated 90 degrees to give a different
block shape. This creates a total of 13 different regular block
types. Structures generated using our algorithm are made up
of rows, with each row consisting of a single block type.
Each block is also randomly assigned one of three possible
materials (wood, ice and stone).

Each structure is generated to fit within a certain area of
the overall level. This area is used to define the maximum
width and height values that the generated structure can pos-

Figure 2: The bottom row of this structure has three possible
subset combinations: each block is in a separate set (red),
all blocks are in a single set (blue), and the three left/right
blocks are partitioned into two sets (green).

(a) (b) (c)

Figure 3: The three supporting block placements for a single
block subset: middle (a), edges (b), mid-points (c).

sess. A probability table is also used to determine the like-
lihood of a particular block type being selected. Each block
type is given a probability of selection, with all probabilities
summing to one.

First, an initial block type is selected at random using the
probability table. This block type will become the peak(s) of
the structure, beneath which all other blocks will be placed.
Any number of peaks can be chosen, either manually or ran-
domly, as can the distance between each of them. However,
if the area taken up by all of the peak blocks fails to sat-
isfy the structure’s maximum width or height limits, then
the peak combination will be declared invalid and a new ar-
rangement will be chosen. This process continues until a
suitable selection is made.

After this first row has been initialized, additional rows
of blocks are recursively created which will be placed un-
derneath the already generated structure. The blocks at the
base of the structure are split into subsets based on the dis-
tances between them. All possible subset combinations are
recorded, see Figure 2. A block type for the new row is then
selected using the probability table. For each subset com-
bination there are three possibilities for placing supporting
blocks:

• Blocks are placed underneath the middle of each subset.

• Blocks are placed underneath the edges of each subset.

• Blocks are placed underneath the mid-points between the
middle and edges of each subset.

All three of these possibilities are shown in Figure 3.
These three choices can also be combined to make a total
of seven different options. Each of these options is created
for all subset combinations using the selected block type,
after which they are tested for validity.

Figure 4: An example of a fully generated structure.

Any case where blocks overlap is deemed invalid and re-
moved as a possible selection. It is also important that the
blocks at the bottom of the already generated structure are
supported by this new row. The level of required support
can be set to one of three settings. The first is that each
block must be supported either at its middle position or both
of its edge positions. The second is that each block must be
supported at both of its edge positions. The third is that each
block must be supported at its middle position and both of
its edge positions. Any case that does not fulfil the chosen
support requirement is deemed invalid.

After validity checks have been performed for all subset
combinations and supporting block placements, a valid op-
tion is selected at random from all possibilities. If no valid
options are available then a new block type is chosen and
the process repeated. The selected option is then used as the
structure’s new bottom row. This process continues until the
width or height of the structure is greater than its maximum
width or height values respectively. Once this occurs the last
row that was added is removed, after which the structure is
complete. This process ensures that the generated structure
will fit within the dimensions specified. An example of a
fully generated structure is shown in Figure 4.

Structure Placement
Structures within an Angry Birds level can be placed either
on the ground or on a platform. The desired number of struc-
tures for each of these options can be defined by the user
but size restrictions mean that this may not always be possi-
ble. Ground structures are placed first followed by platform
structures.

The available ground space within a level is divided into
randomly sized sections, with the number of sections equal
to the desired number of ground structures. Whilst these
sections can theoretically be any size it is useful to employ a
minimum size limit. This prevents sections from being too
small which restricts the complexity of the generated struc-
tures. A structure is then generated for each ground section.
The maximum width of each structure is equal to the width
of its section and the maximum height of the structure is set
to two thirds the total height of the level space.

After all ground structures have been generated the plat-
forms are placed within the level. Platforms are made up
of square blocks which are not subject to the same physics

as other objects and are instead fixed in place. The size of a
platform is determined by the number of blocks that are used
to create it. All platforms have a height of exactly one block
but the width of a platform can vary. Like the ground sec-
tions, it is useful to set minimum and maximum size limits
on the platforms created. Each platform’s location is de-
termined randomly within the level space. The location is
deemed valid if the following holds true: the platform does
not overlap any other platform or ground structure, the plat-
form is not too close to the top of the level space, if the
platform is placed above or below another platform then it
should not be too close to that platform. These last two
requirements ensure that all platforms have enough space
above them to generate a complex and interesting structure.
Additional checks are also performed to ensure that plat-
forms do not block off any sections of the level. Depending
on the desired number of platform structures and the size of
the ground structures, it may not be possible to fit all the nec-
essary platforms within the available level space. Each plat-
form is therefore given a maximum number of placement at-
tempts. If a suitable location for a platform cannot be found
after this many attempts then it is disregarded. This means
that the actual number of platforms within a level may be
lower than what was originally requested.

A structure is then generated for each successfully placed
platform. The maximum width of each structure is equal
to the width of its platform and the maximum height of the
structure is the vertical distance between the platform and ei-
ther the top of the level space or any platform located above
it (whichever is smaller).

Pig Placement
Once all structures have been placed within the level they
can be populated with pigs. Each structure is analyzed for
possible pig locations using the following method. First, the
spaces directly above the middle and edges of each block
within the structure are analyzed to see if there is space for a
pig to fit such that it doesn’t overlap any blocks or platforms.
Any positions that are deemed large enough to support a pig
are recorded as valid pig locations.

Next, the positions that are either on the ground or on plat-
forms, which are also within a structure (to a set precision),
are tested. A position is defined as within a structure if there
are blocks to its left and right that both belong to the same
structure. Again, a check for any overlap with nearby blocks
is carried out and valid locations recorded.

Once all valid pig locations have been identified they are
ranked based on a combination of factors. The first factor
(f1) is the structural protection that the pig is offered with re-
spect to the blocks surrounding it. Pigs that are placed within
a structure have greater protection from incoming shots than
those outside it. The degree of protection that a pig location
has is calculated as the minimum number of blocks to its
left (bl), right (br) or above (ba), that are all associated with
the same structure as the pig location. This value is then
multiplied by a set weighting (X).

f1 = X(min(bl, br, ba)) (1)

The second factor (f2) is the overall dispersion of pigs
throughout the level. Levels with pigs spread throughout
them are typically preferable to levels with pigs grouped to-
gether. The dispersion value for a pig location (pl) is cal-
culated as the product of the Euclidean distances between
itself and all the pig locations which have already been se-
lected (ps). This value is then multiplied by a set weighting
(Y).

f2 = Y
∏

px∈ps

plpx (2)

The final factor (f3) is occupancy estimation and is
based on a technique called occupancy-regulated extension
(Mawhorter and Mateas 2010). If a pig location is lower
than a platform and within a set distance (D) of that plat-
form’s edges then f3 is equal to a set weighting (Z) (other-
wise f3 = 0). This is because one of the key features within
Angry Birds is the ability to kill pigs with falling blocks,
rather than with birds alone. Pigs that are placed below or
near other blocks which may potentially fall and kill them
provide the user with this alternative choice of action. Pigs
that are situated below the edges of platforms are particu-
larly vulnerable to this kind of attack.

The sum of all three of these factors gives a fitness value
for each pig location. All pig locations are ranked using their
fitness values, with a higher fitness value indicating a more
desirable location.

After all valid pig locations have been ranked the pigs are
placed within the level. The desired number of pigs within
the level can be decided either manually or by random selec-
tion. The location with the highest ranking is chosen and a
pig is placed at the specified position. Any previously valid
pig locations that would overlap the newly placed pig are
removed. The remaining pig locations are then re-evaluated
and the highest ranked position is again selected. This pro-
cess continues until the desired number of pigs is reached or
there are no more valid pig locations.

If the desired number of pigs has still not been reached,
even after exhausting all valid pig locations, then additional
pigs are added as follows. A ground position is chosen at
random and analyzed to see if there is space for a pig to be
placed there. If there is then the pig is placed, otherwise a
new location is randomly selected. This continues until the
desired number of pigs is reached or a maximum number of
attempts is reached.

Irregular Block Placement
After pig locations have been finalised, attempts are made to
place irregular blocks throughout the level. Block 10 can be
rotated 90 degrees to form a new block shape, bringing the
total number of irregular block types to five. These blocks
are placed in a similar fashion to the pigs. Valid locations are
determined for each of the block types, both on top of blocks
and on the ground or platforms within a structure. As block
10 is not vertically symmetrical it must also be supported
such that it will not fall over. It can therefore only be placed
on blocks that are wide enough to support it. After all valid
locations have been identified for all block types, a specific

block type and location is selected at random. Much like
the regular blocks, the chance of selecting each block type
is specified in a probability table. Any remaining locations
that would overlap this selected block are removed as valid
possibilities. This continues until no more valid options re-
main.

Structural Weak Points
The concept of a weak point for a structure is any block
that, if removed, would cause a large number of other ob-
jects (blocks or pigs) to be affected (Zhang and Renz 2014).
Levels that are intended to be difficult to solve can attempt
to shield these particular blocks from the user’s shots. This
protection can also reduce the effectiveness of greedy shots
and requires the user to plan their actions carefully.

To identify weak points, every block within the generated
level is first tested to see if it is ”reachable”, i.e. it can be hit
directly with a bird fired from the slingshot. Every reachable
block is then given a score based on the number of objects
that will be affected by its removal. If the removal of a block
violates another object’s local support requirements then we
say that this object has been affected. An object is also af-
fected if its local support requirements would be violated by
the removal of any other affected objects. Affected blocks
add one to the score, whilst affected pigs add ten. If the score
for any reachable block is greater than a set threshold (W),
then the block is classified as a weak point.

The proposed level generator can attempt to protect a
weak point using a variety of methods. Firstly, if the weak
point is part of a ground structure and there is sufficient
space to the left of the structure, then a stack of randomly
chosen blocks (selected using the probability table) is placed
to the left of the structure. This stack is recursively built
one block at a time until either the weak point is no longer
reachable, or any of the blocks in the stack overlap other ob-
jects, at which point the last added block is removed. Sec-
ondly, if the weak point is part of a supporting block arrange-
ment where positions for other support blocks are available,
then additional support blocks are added if there is sufficient
space. Lastly, the material of the weak point can be set to
stone, as this increases the block’s overall durability.

Bird Number Selection
The number of birds that are provided is very important to
a level’s integrity, as this determines how difficult the level
will be to complete. If the number of birds is too low then
the level will be extremely challenging, perhaps even impos-
sible. Conversely, if the number of birds to too high then the
level will be too easy.

Selecting the number of birds (b) is based on a formula
which takes into account the number of pigs (p) and struc-
tures (s) that are present within the level:

b =

{
dp2e if s < |p2 |
dp2e+ 1 otherwise

(3)

In words, this means that the number of birds is equal
to half the number of pigs (rounding up) plus an additional
bird if the number of structures is greater than or equal to

Figure 5: An example of a fully generated level.

this value. An additional bird can then be added again if
the level is intended to be easy, or removed if the level is
intended to be difficult.

After selecting the number of birds the level is complete.
An example of a fully generated level is shown in Figure 5.

Experiments and Results
Two studies were conducted to analyze the stability of the
generated structures and evaluate the overall expressivity of
our level generator.

Stability
The stability of the structures created by our generator is a
critical factor that influences the quality of the levels pro-
duced. Structures that cannot support themselves will fall
down once the level is initialized and severely reduce its
overall appeal. There are currently three different support
options that can be used to alter the stability requirements
for the structures created. The option chosen determines
the level of support that is needed by each block within the
structure. Several tests were carried out to determine if the
support requirement, as well as the width and height, of a
structure was a good indication of its stability.

The first test was carried out using the requirement that
each block must be supported either in its middle position
or both of its edge positions. 100 structures were generated,
with the width and height limits for each structure selected
randomly. All blocks had an equal chance of being selected
and blocks with two possible block types (different rota-
tions) had their selection probability split evenly between
them. The results of this experiment are illustrated in Figure
6. The average width and height of each stable structure was
4.65 and 4.39 respectively. The average width and height of
each unstable structure was 3.73 and 5.37 respectively. This
result demonstrates that structures which are short and wide
are more likely to be stable than structures which are tall and
thin. Of the 100 generated structures 74 of them were stable
and 26 were not.

Whilst it is possible to increase the likelihood of a gener-
ated structure being stable by implementing a separate sta-
bility analysis method, the engine within which the level is
eventually placed will likely suffer from simulation inaccu-
racies. It is therefore not possible to guarantee the stability
of a generated structure using this support requirement.

The remaining two support requirements generated no un-
stable structures, but had different effects on the qualities of

Figure 6: Width and Height values for 100 generated struc-
tures.

the structures generated. The second of the three options has
the requirment that each block must be supported at both of
its edge positions. This requirement guarantees that the gen-
erated structure will be stable but results in a lower number
of structure possibilities than the first option. The third op-
tion has the requirment that each block must be supported at
its middle position and both of its edge positions. This addi-
tional restriction increases the overall robustness of the gen-
erated structures but further decreases the number of struc-
ture possibilities.

Out of all three of these support options we would there-
fore recommend the second. The first option provides the
most variety in structure generation but cannot guarantee
the stability of the structures created. The third option (like
the second) guarantees the stability of the generated struc-
tures, but restricts the algorithms expressivity and reduces
the amount of free space within each structure. As a result
of this analysis, the second support option was used when
evaluating the level generator’s expressivity.

Expressivity Analysis
The expressivity of a level generator is the space of all lev-
els it can generate and is measured by evaluating different
aspects of a level to identify its strengths and weaknesses.
Several metrics have been proposed to analyze a generator’s
expressivity (Smith and Whitehead 2010; Smith et al. 2011;
Horn et al. 2014; Snodgrass and Ontanon 2015): frequency,
linearity, density, leniency and playability. For our experi-
ments we generated 200 levels, each containing three ground
structures, two platform structures and eight pigs. For pig
placement we defined X=3.0, Y =0.002, Z=1.0 and D=0.8.
For identifying structural weak points we defined W=30.
All blocks had an equal chance of being selected and blocks
with two possible block types (different rotations) had their
selection probability split evenly between them.

Frequency Frequency evaluates the number of times that
a block type occurs within a level. Figure 7 shows the av-
erage frequency of each block type within a level (block
types with an r-subscript indicate blocks that have been ro-
tated ninety degrees). Even though each block had an equal

Figure 7: Average frequency for each block type.

chance of being selected we can see that wide blocks ap-
peared less frequently than thin blocks. The same can also
be said about most of the regular block types and their ro-
tated counterparts. This is likely due to the fact that wider
block types are more likely to fulfil the necessary support
requirements with a fewer number of blocks. Thinner block
types require more blocks to fulfil these conditions and so
are placed more frequently. It is also apparent that short
block types are chosen more frequently than tall ones. This
is likely due to the size restrictions imposed on the struc-
tures created. Once a structure exceeds its maximum width
or height, the last row that was added is removed. Selecting
tall or wide blocks are more likely to push the structure’s
dimensions past these limits and so are less likely to be in-
cluded in the final structure. Both of these issues could be
easily rectified by increasing the probability of larger block
types being selected.

Linearity Linearity measures the ”profile” of generated
levels. Levels with objects placed at multiple heights
throughout the level space will have a low linearity, while
levels where the objects follow a straight line will have a
high linearity. Linearity is measured by performing a linear
regression, taking the center points of all blocks, platforms
and pigs as our data points. Each level is then scored based
on its R2 value. The average linearity of a generated level
is 0.0462, with a standard deviation of 0.0439. This result
shows that our levels are highly non-linear, with objects be-
ing distributed throughout the entire level space.

Density The density of a level represents the compactness
of the objects placed within it. Density is measured by calcu-
lating the total area of all blocks, platforms and pigs within
the level space. This is then divided by the total size of the
level space to give a percentage indicating how much of the
level’s area was taken up by objects. The average density
of a generated level is 24.3%, with a standard deviation of
4.26%. We believe this density percentage is suitable, as
levels with a low density are likely to be sparse and uninter-
esting, whilst levels with a high density are likely to be too
congested.

Leniency Leniency is used to express how difficult a level
is to successfully complete, i.e. kill all pigs with the birds

provided. The difficulty of a level is estimated using the
number of pigs and structures that are present. This is then
used to determine the number of birds that are provided to
the player. Therefore, the leniency of a level is entirely de-
pendent on the genertor’s input parameters.

Playability Playability is used to represent whether a level
is solvable. Due to the exceptionally large state and action
space, it is difficult to determine if a level can be completed.
Several AI agents that are designed for playing Angry Birds
were employed, but the results proved unreliable. An AI
agent can be used to confirm that a level is solvable but not
that it is unsolvable. Although every generated level should
be solvable using an infinite number of birds, whether or
not a level can be solved using the birds provided remains
unknown.

Conclusions and Future Work
This paper has presented a procedural generation algorithm
for creating complex and interesting levels in physics-based
puzzle games similar to Angry Birds. The algorithm con-
structs these levels by generating a collection of indepen-
dent structures and arranging them throughout the available
level space. These structures are created using a variety of
different block types and can be demonstrated to be struc-
turally stable. Additional factors such as a varying number
of peaks, multiple locations for support block placement and
several possible materials, ensure that the range of possible
structures is extensive and diverse. The levels are then pop-
ulated with target objects (pigs) and other additional block
types. Structural weak points are identified and can be pro-
tected using a variety of methods. The number of attempts
to solve the level (number of birds) is then chosen based on
a combination of factors.

The proposed level generator is also highly customis-
able. Many different aspects can be defined by the user,
such as the number of ground and platform structures, num-
ber of pigs, block selection probabilities, structural support
requirements, pig placement parameters and many others.
This allows the level generator to be tailored to any purpose
and it can be used to create levels for a variety of situations.
The generator is also flexible enough that it can be applied
to many other games apart from Angry Birds.

Our proposed level generator was evaluated in terms of
its expressivity using a wide variety of metrics: frequency,
linearity, density, leniency and playability. These metrics
were calculated using not only the type of objects within
each level, but also their position and quantity. The results
of this analysis demonstrated that our structure generator can
create a broad range of levels with many desirable attributes.

There is an extensive variety of future possibilities for this
research. One example could be to develop more sophisti-
cated methods for structure generation, creating structures
that can contain multiple block types and angles within each
row. Additional studies could also be carried out into intel-
ligent material selection or playability analysis. Work could
also be performed on creating an algorithm that can gener-
ate levels using a limited supply of objects or other similar
restrictions.

References
Cardamone, L.; Loiacono, D.; and Lanzi, P. L. 2011. In-
teractive evolution for the procedural generation of tracks
in a high-end racing game. In Proceedings of the 13th An-
nual Conference on Genetic and Evolutionary Computation,
395–402. ACM.
Cook, M., and Colton, S. 2011. Multi-faceted evolution
of simple arcade games. In Computational Intelligence and
Games (CIG), 2011 IEEE Conference on, 289–296.
Dahlskog, S., and Togelius, J. 2012. Patterns and procedu-
ral content generation: Revisiting mario in world 1 level 1.
In Proceedings of the First Workshop on Design Patterns in
Games, 1:1–1:8. ACM.
Ferreira, L., and Toledo, C. 2014a. Generating levels for
physics-based puzzle games with estimation of distribution
algorithms. In Proceedings of the 11th Conference on Ad-
vances in Computer Entertainment Technology, 25:1–25:6.
ACM.
Ferreira, L., and Toledo, C. 2014b. A search-based approach
for generating angry birds levels. In Computational Intelli-
gence and Games (CIG), 2014 IEEE Conference on, 1–8.
Hendrikx, M.; Meijer, S.; Velden, J. V. D.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Trans. Multimedia Comput. Commun. Appl. 9(1):1–
22.
Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level gen-
erators in the mario ai framework. In Foundations of Digital
Games 2014, 1–8.
Kaidan, M.; Chu, C. Y.; Harada, T.; and Thawonmas, R.
2015. Procedural generation of angry birds levels that adapt
to the player’s skills using genetic algorithm. In 2015 IEEE
4th Global Conference on Consumer Electronics (GCCE),
535–536.
Kaidan, M.; Harada, T.; Chu, C. Y.; and Thawonmas, R.
2016. Procedural generation of angry birds levels with
adjustable difficulty. In Proceedings of the IEEE World
Congress on Computational Intelligence.
Kerssemakers, M.; Tuxen, J.; Togelius, J.; and Yannakakis,
G. N. 2012. A procedural procedural level generator gen-
erator. In 2012 IEEE Conference on Computational Intelli-
gence and Games (CIG), 335–341.
Lara-Cabrera, R.; Nogueira-Collazo, M.; Cotta, C.; and
Fernndez-Leiva, A. J. 2015. Procedural content genera-
tion for real-time strategy games. International Journal of
Interactive Multimedia and Artificial Intelligence 40–48.
Mawhorter, P., and Mateas, M. 2010. Procedural level gen-
eration using occupancy-regulated extension. In Proceed-
ings of the IEEE Conference on Computational Intelligence
in Games (CIG), 351–358.
Mourato, F.; dos Santos, M. P.; and Birra, F. 2011. Au-
tomatic level generation for platform videogames using ge-
netic algorithms. In Proceedings of the 8th International
Conference on Advances in Computer Entertainment Tech-
nology, 8:1–8:8. ACM.

Shaker, M.; Sarhan, M. H.; Naameh, O. A.; Shaker, N.; and
Togelius, J. 2013. Automatic generation and analysis of
physics-based puzzle games. In Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, 1–8.
Shaker, M.; Shaker, N.; Togelius, J.; and Abou-Zleikha, M.
2015. A progressive approach to content generation. In 18th
European Conference on the Applications of Evolutionary
Computation, EvoApplications 2015, 381–393.
Shaker, N.; Shaker, M.; and Togelius, J. 2013a. Evolving
playable content for cut the rope through a simulation-based
approach. In Proceedings of the Ninth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
72–78.
Shaker, N.; Shaker, M.; and Togelius, J. 2013b. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 215–216.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games,
4:1–4:7. ACM.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A rhythm-based level
generator for 2-d platformers. IEEE Transactions on Com-
putational Intelligence and AI in Games 3(1):1–16.
Snodgrass, S., and Ontanon, S. 2015. A hierarchical mdmc
approach to 2d video game map generation. In AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 205–211.
Stammer, D.; Mannheim, H.; Gnther, T.; and Preuss, M.
2015. Player-adaptive spelunky level generation. In 2015
IEEE Conference on Computational Intelligence and Games
(CIG), 130–137.
Valtchanov, V., and Brown, J. A. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the
Fifth International C* Conference on Computer Science and
Software Engineering, 27–35. ACM.
Xu, Q.; Tremblay, J.; and Verbrugge, C. 2014. Generative
methods for guard and camera placement in stealth games.
In AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 87–93.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147–161.
Zhang, P., and Renz, J. 2014. Qualitative spatial represen-
tation and reasoning in angry birds: The extended rectangle
algebra. In Knowledge Representation and Reasoning Con-
ference.

